Activity for 4.1 - State the area of each square, then represent the area using a power. State the dimension of one of the sides of each square.

If we are given the area of a square and we want to determine the measurement of one of its sides, what function would we use to accomplish this?

4.1 - Radical Expressions - Square Root

Use the terms index, radicand, and square root to label the following expression:

$$
\sqrt[2]{25}=5
$$

Class Notes - Evaluate each expression that has a perfect square for its radicand. If an expression contains a radicand that is not a perfect square, write "need calculator".

LP\#1 $\sqrt{16}$	$\sqrt{81}$	$\sqrt{42}$	$\sqrt{121}$	$\sqrt{5}$
LP\#2 $\sqrt{36}$	$\sqrt{11}$	$\sqrt{49}$	$\sqrt{1}$	$\sqrt{72}$

Class Notes - Evaluate each expression. State whether the result is rational or irrational. Let $w=2, x=3$, and $y=4$.

LP\#3 \sqrt{w}	\sqrt{x}	\sqrt{y}	$\sqrt{12 x}$
LP\#4 $\sqrt{x-w}$	$\sqrt{w+x+y}$	$\sqrt{3 x+4 y}$	$\sqrt{5 y-2 x}$

Class Notes - If the radical expression has a perfect radicand, simplify it. If it does not contain a perfect radicand, write "not now".

LP\#5 $\sqrt{x^{2}}$	$\sqrt{m^{2}}$	$\sqrt{p^{3}}$	$\sqrt{w^{2}}$
$\mathbf{L P} \# 6$ \sqrt{n}	$\sqrt{k^{2}}$	$\sqrt{d^{2}}$	$\sqrt{y^{3}}$

Review - Evaluate or simplify each expression.

R\#1 $\sqrt{9}$	$\sqrt{144}$	$\sqrt{h^{2}}$
R\#2 $\sqrt{64}$	$\sqrt{196}$	$\sqrt{b^{2}}$
R\#3 $\sqrt{4}$	$\sqrt{400}$	$\sqrt{a^{2}}$

Homework -

Evaluate each expression.

1) $\sqrt{64}$
2) $\sqrt{121}$
3) $\sqrt{25}$
4) $\sqrt{225}$
5) $\sqrt{49}$
6) $\sqrt{81}$
7) $\sqrt{196}$
8) $\sqrt{144}$
9) $\sqrt{36}$
10) $\sqrt{4}$
11) $\sqrt{16}$
12) $\sqrt{9}$

Evaluate each expression. State whether the result is rational or irrational.
Let $w=5, x=1$, and $y=8$.
13) $\sqrt{20 w}$
14) $\sqrt{7 x}$
15) $\sqrt{y+y}$
16) $\sqrt{x+y}$
17) $\sqrt{10 x-w}$
18) $\sqrt{2 w+7 x+y}$
19) $\sqrt{4 x+4 y}$
20) $\sqrt{4 w-3 x}$
21) $\sqrt{2 y}$
22) $\sqrt{6 w-5 x}$
23) $\sqrt{10 w-3 y}$
24) $\sqrt{10 y+8 w+x}$

4.2 - Radical Expressions - Cube Root

The concept for cube root is similar to square root, except we must think in terms of a cube instead of a square.

Activity 1

$$
\sqrt[3]{8}=\quad \sqrt[3]{27}=
$$

In respect to the diagrams in the activity, what do the cube root of 8 and the cube root of 27 represent?

State the index and the radicands for the radical expressions above.

List of perfect cubes

$$
\begin{array}{ll}
4 \times 4 \times 4= & 8^{3}= \\
5 \times 5 \times 5= & 9^{3}= \\
6 \times 6 \times 6= & 10^{3}= \\
7 \times 7 \times 7= &
\end{array}
$$

Class Notes - Evaluate each expression that has a perfect cube for its radicand. If an expression contains a radicand that is not a perfect cube, write "need calculator".

LP\#1 $\sqrt[3]{125}$	$\sqrt[3]{27}$	$\sqrt[3]{49}$	$\sqrt[3]{8}$
LP\#2 $\sqrt[3]{81}$	$\sqrt[3]{1}$	$\sqrt[3]{36}$	$\sqrt[3]{1000}$

Class Notes - If the radical expression has a perfect cube radicand, simplify it. If it does not contain a perfect cube radicand, write "not now".

LP\#3 $\sqrt[3]{x^{3}}$	$\sqrt[3]{m^{3}}$	$\sqrt[3]{b^{2}}$	$\sqrt[3]{w^{3}}$
LP\#4 $\sqrt[3]{k^{4}}$	$\sqrt[3]{f^{3}}$	$\sqrt[3]{n^{5}}$	$\sqrt[3]{p^{3}}$

Review - Evaluate or simplify each expression.

R\#1 $\sqrt[3]{8}$	$\sqrt[3]{216}$	$\sqrt[3]{p^{3}}$
R\#2 $\sqrt[3]{64}$	$\sqrt[3]{729}$	$\sqrt[3]{p^{3}}$
R\#3 $\sqrt[3]{27}$	$\sqrt[3]{343}$	$\sqrt[3]{h^{3}}$

Homework -

Evaluate each expression that has a perfect cube for its radicand. If an expression contains a radicand that is not a perfect cube, write "need calculator".

1) $\sqrt[3]{125}$
2) $\sqrt[3]{27}$
3) $\sqrt[3]{49}$
4) $\sqrt[3]{8}$
5) $\sqrt[3]{65}$
6) $\sqrt[3]{1}$
7) $\sqrt[3]{36}$
8) $\sqrt[3]{1000}$
9) $\sqrt[3]{64}$
10) $\sqrt[3]{343}$
11) $\sqrt[3]{216}$
12) $\sqrt[3]{17}$

Evaluate each expression. State whether the result is rational or irrational. Let $w=2$, $x=3$, and $y=4$.
13) $\sqrt[3]{6 y+x}$
14) $\sqrt[3]{11 w+25 y+x}$
15) $\sqrt[3]{2 y}$
16) $\sqrt[3]{x-w}$
17) $\sqrt[3]{4 y+100 w}$
18) $\sqrt[3]{y^{3}}$
19) $\sqrt[3]{2 x+w}$
20) $\sqrt[3]{20 y-8 w}$

4.3 - Solving a Second-Degree Equation

In this lesson we will be solving second-degree equations. Second-degree equations contain a variable that has an exponent of two.

Class Notes - State the degree of each equation. Identify the equation as a first-degree equation or a second-degree equation.

LP\#1 $x^{2}=16$	$w+3=15$	$y^{2}=36$	$3 z=42$
$\mathbf{L P} \# 2$ $x^{2}+10=35$	$100=4 w^{2}$	$10 z=120$	$4 x^{2}=400$
LP\#3 $w^{2}+w=6$	$y^{4}=16$	$x^{2}=4$	$x^{2}-x=12$

Class Notes - A solution to each equation is given. Check to see if the solution is correct or incorrect.

LP\#4$x^{2}=16$ $x=4$	$y^{2}=36$ $y=6$	$m^{2}=400$ $m=15$	
		(P) $x=9$	$100=4 w^{2}$ $w=5$
LP\#5	$x^{2}+10=35$ $x=5$		

Go to http://en.wikipedia.org/wiki/Equations\#Properties. Read the section titled "Properties". Which of the five properties must we use when solving the equation $x^{2}=49$?

State which property to use here.	Solve the equation here.

Class Notes - Solve each second-degree equation and check. If you do not solve an equation, explain why.

LP\#6 $x^{2}=121$ 5	$m^{2}=64$	$x=49$
LP\#7 $x^{2}=144$ 	$x=169$	$p^{2}=25$

Review - Solve each second-degree equation and check. If an equation is not a seconddegree equation write "not a second-degree equation".

R\#1 $x^{2}=49$	$x^{2}=169$
R\#2 $x^{2}=4$	$x+2=38$
R\#3 $x^{2}+10=26$	$2 x^{2}=50$

Homework

Evaluate.

1) $3^{2}=$
2) $8^{2}=$
3) $12^{2}=$
4) $5^{2}=$
5) $2^{2}=$
6) $9^{2}=$
7) $4^{2}=$
8) $7^{2}=$
9) $1^{2}=$
10) $11^{2}=$
11) $10^{2}=$
12) $6^{2}=$
13) $13^{2}=$
14) $20^{2}=$
15) $15^{2}=$

Solve each second-degree equation and check.
16) $x^{2}=100$
17) $m^{2}=81$
18) $p^{2}=100+21$
19) $p^{2}=16$
20) $x^{2}=30-5$
21) $m^{2}=9$
22) $x^{2}=30-5$
23) $m^{2}=30+19$
24) $x^{2}+10=74$
25) $x^{2}-4=32$
26) $2 x^{2}=200$
27) $3 x^{2}=12$

Synthesis

The area of a square is $9 \mathrm{in}^{2}$. Let m represent the measure of one of the sides in inches. Create a second-degree equation that you could solve to determine the length of the side m. Solve the equation and state the dimensions of the square.

4.4 - Solving a Third-Degree Equation

In this unit we will be solving third-degree equations. Third-degree equations contain a variable that has an exponent of three.

Class Notes - State the degree of each equation. Identify the equation as a first-degree equation, second-degree equation, or a third degree equation.

LP\#1 $x^{3}=8$	$w+3=15$	$y^{2}=36$	$3 z^{3}=375$
LP\#2 $x^{3}+1=28$	$32=4 w^{3}$	$10 z=120$	$4 x^{2}=400$
LP\#3 $w^{3}+w^{2}=w+6$	$y^{3}=216$	$x^{2}=4 x^{3}$	$x^{2}-x=12$

Class Notes - A solution to each equation is given. Check to see if the solution is correct or incorrect.

Class Notes - Solve each third-degree equation and check. If you do not solve an equation, explain why.

LP\#6		
$x^{3}=216$	$4 x^{2}=400$	$x^{3}=27$
LP\#7 $w+20=3 w-15$ 	$x^{3}=8$	$x^{3}=1$

Review - Solve each third-degree equation and check.

R\#1 $x^{3}=125$	$x^{3}=27$
R\#2 $x^{3}=729$ R\#3 $x^{3}=512$	$x^{3}=8$

Homework

Evaluate.

1) $3^{3}=$
2) $8^{3}=$
3) $10^{3}=$
4) $5^{3}=$
5) $6^{3}=$
6) $9^{3}=$
7) $4^{3}=$
8) $7^{3}=$
9) $1^{3}=$
10) $2^{3}=$

Solve each third-degree equation and check.
11) $x^{3}=1000$
12) $x^{3}=512$
13) $x^{3}=216$
14) $x^{3}=729$
15) $x^{3}=125$
16) $x^{3}=8$
17) $x^{3}=343$
18) $x^{3}=27$
19) $x^{3}=64$

4.5 - Practice Solving Different Types of Equations

$x^{2}+20=45$	$52=3 x-8$	$x^{3}=125$
Match the terms below with the equations that they describe above. First-Degree Equation Second-Degree Equation	Third-Degree Equations	

Practice - a) Label each equation as first, second, or third degree. There will be one of each type in each row. b) Solve each equation and check.

LP\#3 $w^{2}=81$	$9(y+3)=9$	$d^{3}=1000$

Review a) Label each equation as first, second, or third degree. There will be one of each type in each row. b) Solve each equation and check.

R\#1 $x^{2}=9$	$y^{3}=64$	$y+27=22$
R\#2 $6(x+1)=7 x+2$	$n^{2}+12=16$	$x^{3}=27$

Homework

1) $x-8=3$
2) $d^{3}=216$
3) $5 m+19=9$
4) $x^{2}=49$
5) $b^{3}=27$
6) $8 m+6=9 m+2$
7) $x^{2}=4$
8) $-15=3 x-30$
9) $y^{2}=144$
10) $2(3 x-10)=4$
11) $k^{3}=1$
12) $5 w+18=9 w-8$
13) $6 y=-54$
14) $18=-3(x-2)$
15) $(8 \wedge 2)=64$
16) $\left(2^{\wedge} 3\right)=8$
17) $10 w-15=7 w$
18) $x^{2}=225$
19) $p^{3}-20=7$
20) $6 x+20=-22$
21) $h^{2}=400$
22) $y+1=2 y+10$
23) $x^{3}+10=18$
24) $3(x+4)=9 x$
