Activity for 4.1 – State the area of each square, then represent the area using a power. State the dimension of one of the sides of each square.

If we are given the area of a square and we want to determine the measurement of one of its sides, what function would we use to accomplish this?

4.1 – Radical Expressions – Square Root

Use the terms *index*, *radicand*, and *square root* to label the following expression:

Class Notes – Evaluate each expression that has a perfect square for its radicand. If an expression contains a radicand that is not a perfect square, write "need calculator".

$\frac{\mathbf{LP\#1}}{\sqrt{16}}$	$\sqrt{81}$	$\sqrt{42}$	√121	$\sqrt{5}$
$\frac{\mathbf{LP\#2}}{\sqrt{36}}$	$\sqrt{11}$	$\sqrt{49}$	$\sqrt{1}$	√72

Class Notes – Evaluate each expression. State whether the result is rational or irrational. Let w = 2, x = 3, and y = 4.

$\overline{-2x}$

Class Notes – If the radical expression has a perfect radicand, simplify it. If it does not contain a perfect radicand, write "not now".

$\frac{\mathbf{LP\#5}}{\sqrt{x^2}}$	$\sqrt{m^2}$	$\sqrt{p^3}$	$\sqrt{w^2}$
$\frac{\mathbf{LP\#6}}{\sqrt{n}}$	$\sqrt{k^2}$	$\sqrt{d^2}$	$\sqrt{y^3}$

1		
$ \begin{array}{c} \mathbf{R#1} \\ \sqrt{9} \end{array} $	$\sqrt{144}$	$\sqrt{h^2}$
R#2 √64	√196	$\sqrt{b^2}$
$ \mathbf{R#3} \\ \sqrt{4} $	$\sqrt{400}$	$\sqrt{a^2}$

Review – Evaluate or simplify each expression.

Homework –

Evaluate each expression.

1)	$\sqrt{64}$	2) $\sqrt{121}$	3) $\sqrt{25}$	4) √225
5)	$\sqrt{49}$	6) $\sqrt{81}$	7) √196	8) $\sqrt{144}$
9)	$\sqrt{36}$	10) $\sqrt{4}$	11) \sqrt{16}	12) \sqrt{9}

Evaluate each expression. State whether the result is rational or irrational.Let w = 5, x = 1, and y = 8.13) $\sqrt{20w}$ 14) $\sqrt{7x}$ 15) $\sqrt{y + y}$ 16) $\sqrt{x + y}$ 17) $\sqrt{10x - w}$ 18) $\sqrt{2w + 7x + y}$ 19) $\sqrt{4x + 4y}$ 20) $\sqrt{4w - 3x}$ 21) $\sqrt{2y}$ 22) $\sqrt{6w - 5x}$ 23) $\sqrt{10w - 3y}$ 24) $\sqrt{10y + 8w + x}$

4.2 – Radical Expressions – Cube Root

The concept for cube root is similar to square root, except we must think in terms of a cube instead of a square.

Activity 1

 $\sqrt[3]{8} =$

In respect to the diagrams in the activity, what do the cube root of 8 and the cube root of 27 represent?

State the index and the radicands for the radical expressions above.

List of perfect cubes

$4 \times 4 \times 4 =$	$8^3 =$
$5 \times 5 \times 5 =$	$9^3 =$
$6 \times 6 \times 6 =$	$10^{3} =$
$7 \times 7 \times 7 =$	10

Class Notes – Evaluate each expression that has a perfect cube for its radicand.	If an
expression contains a radicand that is not a perfect cube, write "need calculator"	•

LP#1 ∛125	∛27	∛49	∛8
LP#2 ∛81	∛1	∛36	∛√1000

Class Notes – If the radical expression has a perfect cube radicand, simplify it. If it does not contain a perfect cube radicand, write "not now".

$LP#3 = \sqrt[3]{x^3}$	$\sqrt[3]{m^3}$	$\sqrt[3]{b^2}$	$\sqrt[3]{w^3}$
$\frac{\mathbf{LP\#4}}{\sqrt[3]{k^4}}$	$\sqrt[3]{f^3}$	$\sqrt[3]{n^5}$	$\sqrt[3]{p^3}$

Review – Evaluate or simplify each expression.

R#1 ³ √8	∛216	$\sqrt[3]{p^3}$
R#2 ³ √64	∛729	$\sqrt[3]{p^3}$
R#3 ∛27	∛343	$\sqrt[3]{h^3}$

Homework -

Evaluate each expression that has a perfect cube for its radicand. If an expression contains a radicand that is not a perfect cube, write "need calculator".

1) $\sqrt[3]{125}$	2) $\sqrt[3]{27}$	3) $\sqrt[3]{49}$	4) $\sqrt[3]{8}$
5) $\sqrt[3]{65}$	6) ³ √1	7) ³ √36	8) ³ √1000
9) ³ √64	10) ³ √343	11) ³ √216	12) ³ √17

Evaluate each expression. State whether the result is rational or irrational. Let w = 2, x = 3, and y = 4.

13) $\sqrt[3]{6y+x}$	14) $\sqrt[3]{11w + 25y + x}$	15) $\sqrt[3]{2y}$	16) $\sqrt[3]{x-w}$
17) $\sqrt[3]{4y+100w}$	18) $\sqrt[3]{y^3}$	19) $\sqrt[3]{2x+w}$	20) $\sqrt[3]{20y-8w}$

4.3 – Solving a Second-Degree Equation

In this lesson we will be solving second-degree equations. Second-degree equations contain a variable that has an exponent of two.

Class Notes – State the degree of each equation. Identify the equation as a first-degree equation or a second-degree equation.

LP#1	w + 3 = 15	$y^2 = 36$	3z = 42
$x^2 = 16$			
LP#2	$100 = 4w^2$	10z = 120	$4x^2 = 400$
$x^2 + 10 = 35$			
LP#3	$y^4 = 16$	$x^2 = 4$	$x^2 - x = 12$
$w^2 + w = 6$			

Class Notes – A solution to each equation is given. Check to see if the solution is correct or incorrect.

LP#4	$x^2 = 16$	$y^2 = 36$	$m^2 = 400$
	x = 4	<i>y</i> = 6	<i>m</i> =15
LP#5	$x^2 + 10 = 35$	$4x^2 = 400$	$100 = 4w^2$
1110	<i>x</i> = 5	<i>x</i> = 9	<i>w</i> = 5

Go to <u>http://en.wikipedia.org/wiki/Equations#Properties</u>. Read the section titled "Properties". Which of the five properties must we use when solving the equation $x^2 = 49$?

State which property to use here.	Solve the equation here.

LP#6 $x^2 = 121$	$m^2 = 64$	x = 49
LP#7	<i>x</i> = 169	$p^2 = 25$
$x^2 = 144$		
LP#8	x 5-20	$r^2 - 20 - 61$
$x^2 + 9 = 13$	x - 5 - 20	x = 20 - 01

Class Notes – Solve each second-degree equation and check. If you do not solve an equation, explain why.

Review – Solve each second-degree equation and check. If an equation is not a second-degree equation write "not a second-degree equation".

R#1	$x^2 = 169$
$x^2 = 49$	
R#2	x + 2 = 38
$x^2 = 4$	
R#3	$2x^2 = 50$
$x^{2} + 10 = 26$	
	I
Homework	
Evaluate.	

1) $3^2 =$	2) $8^2 =$	3) $12^2 =$	4) $5^2 =$	5) $2^2 =$
6) $9^2 =$	7) $4^2 =$	8) $7^2 =$	9) $1^2 =$	10) 11 ² =
11) $10^2 =$	12) $6^2 =$	13) $13^2 =$	14) $20^2 =$	15) $15^2 =$

Solve each second-degree equation and check. **16**) $x^2 = 100$ **17**) $m^2 = 81$ **18**) $p^2 = 100 + 21$ **19**) $p^2 = 16$

20) $x^2 = 30-5$ **21**) $m^2 = 9$ **22**) $x^2 = 30-5$ **23**) $m^2 = 30+19$

24) $x^2 + 10 = 74$ **25**) $x^2 - 4 = 32$ **26**) $2x^2 = 200$ **27**) $3x^2 = 12$

Synthesis

The area of a square is 9 in^2 . Let *m* represent the measure of one of the sides in inches. Create a second-degree equation that you could solve to determine the length of the side *m*. Solve the equation and state the dimensions of the square.

4.4 – Solving a Third-Degree Equation

In this unit we will be solving third-degree equations. Third-degree equations contain a variable that has an exponent of three.

Class Notes – State the degree of each equation. Identify the equation as a first-degree equation, second-degree equation, or a third degree equation.

LP#1	w + 3 = 15	$y^2 = 36$	$3z^3 = 375$
$x^3 = 8$			
LP#2	$32 = 4w^3$	10z = 120	$4x^2 = 400$
$x^3 + 1 = 28$			
LP#3	$v^3 = 216$	$r^2 - 4r^3$	$r^2 - r - 12$
$w^3 + w^2 = w + 6$	y - 210	$\lambda = \pm \lambda$	$\lambda \lambda = 12$

Class Notes – A solution to each equation is given. Check to see if the solution is correct or incorrect.

LP#4	$x^3 = 125$	$x^3 = 9$	$x^3 = 64$
	<i>x</i> = 5	<i>x</i> = 3	x = 4
LP#5	$x^3 + 1 = 28$	$32 = 4w^3$	$3z^3 = 375$
	<i>x</i> = 3	w = 4	z = 5
			1

LP#6	$4x^2 = 400$	$x^3 = 27$
$x^3 = 216$		
I D#7	³ 0	3 1
	$x^* = 8$	$x^{*} = 1$
w + 20 = 3w - 15		
I D#9	2 10	3 1000
	x = 49	$x^{*} = 1000$
$x^{5} = 64$		

Class Notes – Solve each third-degree equation and check. If you do not solve an equation, explain why.

R #1	$x^{3} = 27$
3 105	
$x^{3} = 125$	
R#2	³ 0
	$\lambda = 0$
$r^3 = 729$	
x = 12	
R#3	$r^3 - 1000$
	x = 1000
$r^3 = 512$	
x = 512	

Review – Solve each third-degree equation and check.

Homework

Evaluate. **3**) $10^3 =$ **4**) $5^3 =$ **5**) $6^3 =$ **2**) $8^3 =$ 1) $3^3 =$ **9**) $1^3 =$ **10**) $2^3 =$ **7**) $4^3 =$ **8**) $7^3 =$ **6**) $9^3 =$ Solve each third-degree equation and check. **11**) $x^3 = 1000$ **12**) $x^3 = 512$ **13**) $x^3 = 216$ **14**) $x^3 = 729$ **15**) $x^3 = 125$ **16**) $x^3 = 8$ **17**) $x^3 = 343$ **18**) $x^3 = 27$ **19**) $x^3 = 64$

4.5 – Practice Solving Different Types of Equations

$x^2 + 20 = 45$	52 = 3x - 8	$x^3 = 125$
Match the terms below with th	e equations that they describe a	bove.
First-Degree Equation	Second-Degree Equation	Third-Degree Equations

Practice -a) Label each equation as first, second, or third degree. There will be one of each type in each row. b) Solve each equation and check.

	1	2 100
LP#1		y = 196
$r \pm 18 - 22$	$r^3 - 216$	
$\lambda \pm 10 - 22$	$\lambda = 210$	
	-	
	2 0 5	6 10
LP#2	$x^2 = 25$	6x = 42
LP#2	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6x = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42
LP#2 <i>m</i> ³ = 8	$x^2 = 25$	6 <i>x</i> = 42
LP#2 $m^3 = 8$	$x^2 = 25$	6 <i>x</i> = 42

I D#2	0(y + 2) = 0	$d^3 - 1000$
	3(y + 3) - 9	u = 1000
$w^2 = 81$		
I D #/	r + 18 - 3r = 6	r^{3} 7 - 20
	$\lambda \pm 10 - 3\lambda = 0$	x = I - 20
$x^2 + 1 = 10$		
	3 0 100	2 10 5
LP#5	$w^2 + 3 = 128$	$x^{-} - 10 = 6$
2y - 4 = 7y - 19		

$\mathbf{R#1} \\ x^2 = 9$	$y^3 = 64$	y +27 = 22
R#2 $6(x+1) = 7x + 2$	$n^2 + 12 = 16$	$x^3 = 27$
R#3 $x^{3}-5=3$	3y + 18 = 6y + 24	x ² =121

Review a) Label each equation as first, second, or third degree. There will be one of each type in each row. b) Solve each equation and check.

Homework

1) $x - 8 = 3$	2) $d^3 = 216$	3) $5m + 19 = 9$	4) $x^2 = 49$
5) $b^3 = 27$	6) $8m + 6 = 9m + 2$	7) $x^2 = 4$	8) $-15 = 3x - 30$
9) $y^2 = 144$	10) $2(3x - 10) = 4$	11) $k^3 = 1$	12) $5w + 18 = 9w - 8$
13) 6 <i>y</i> = -54	14) 18 = -3(<i>x</i> - 2)	15) (8^2) = 64	16) (2^3) = 8
17) 10 <i>w</i> - 15 = 7 <i>w</i>	18) $x^2 = 225$	19) $p^3 - 20 = 7$	20) $6x + 20 = -22$
21) $h^2 = 400$	22) <i>y</i> + 1 = 2 <i>y</i> +10	23) $x^3 + 10 = 18$	24) $3(x+4) = 9x$