8-3 Reflections on the Coordinate Plane

Reflection (x-axis) - a) Find the coordinates of the vertices of each pre-image after a reflection over the given axis. Then graph the reflected image. b) Answer any questions that follow.

LP#1

How does the size and shape of the image compare to its pre-image?

LP#2

In the pre-image, line BR is parallel to line TS. In the image of shape B'T'S'R', is the line B'R' parallel to T'S'?

Create a rule for reflections through the x –axis.

A method for expressing a rule to represent a translation is as follows: $(x,y) \rightarrow (x+a,y+b)$

Examine the points to the pre-images and the resulting points of the images after the reflections through the x-axis in LP#1 and LP#2 to create a rule to represent a reflection through the x-axis.

Reflection (y-axis) - **a)** Find the coordinates of the vertices of each figure after a reflection over the given axis. Then graph the reflection image. **b)** Answer any questions that follow.

LP#3

How does the size and shape of the image compare to its pre-image?

LP#4

In the pre-image, line DB is perpendicular to line BA. In the image of shape D'B'A', is the line D'B' parallel to B'A'?

Create a rule for reflections through the y –axis.

A method for expressing a rule to represent a translation is as follows:

$$(x,y) \rightarrow (x+a,y+b)$$

A method for expressing a rule to represent a reflection through the *x*-axis is as follows: $(x,y) \rightarrow (x,-y)$

Examine the points to the pre-images and the resulting points of the images after the reflections through the y-axis in LP#3 and LP#4 to create a rule to represent a reflection through the y-axis.

Reflections (A)

Draw each reflected image.

Reflect over y = 0.

Reflect over x = 0.

Reflect over x = 0.

Reflections (B)

Draw each reflected image.

Reflect over x = 0.

Reflect over x = 0.

Reflect over y = 0.

Reflections (C)

Draw each reflected image.

Reflect over y = 0.

Reflect over x = 0.

Reflect over x = 0.

Reflections (D)

Draw each reflected image.

Reflect over x = 0.

Reflect over x = 0.

Reflect over x = 0.

Reflections (E)

Draw each reflected image.

Reflect over x = 0.

Reflect over x = 0.

Reflect over x = 0.

Reflections (F)

Draw each reflected image.

Reflect over y = 0.

Reflect over y = 0.

Reflect over y = 0.

Reflections (G)

Draw each reflected image.

Reflect over x = 0.

Reflect over x = 0.

Reflect over y = 0.

Reflections (H)

Draw each reflected image.

Reflect over y = 0.

Reflect over y = 0.

Reflect over y = 0.

Reflections (I)

Draw each reflected image.

Reflect over x = 0.

Reflect over x = 0.

Reflect over x = 0.

Reflections (J)

Draw each reflected image.

Reflect over y = 0.

Reflect over y = 0.

Reflect over x = 0.

Rotations (J)

Draw the rotated image.

Rotate 90° counterclockwise about (0, 0).

Rotate 90° counterclockwise about (0, 0).

Rotate 90° clockwise about (0, 0).

Rotate 180° about (0, 0).

