5.2 - Graphing a Proportional Relationship

The most direct relationship that can exist between two numbers is when they are equal to each other. A few examples of this concept are $1=1,7=7$, and $-4=-4$. To represent all the possible examples, we can use the equation $y=x$ and its graph. To graph this, we will construct a table to organize our points.

Set 1

x	$y=x$	y	(x, y)

Proportional Relationships

A proportional relationship is a relationship in which two quantities vary directly with each other. In other words, if one quantity is doubled the other will also be doubled, if you triple a quantity the other will also be tripled and so on. A proportional relationship is represent by the equation $y=m x$. In the equation, m represents the constant of proportionality. The value of m will determine if quantities are being doubled, tripled, quadrupled, etc.

Set 2

Use the following table to determine coordinate pairs for $y=2 x$.

x	$y=2 x$	y	(x, y)

What was the value of m ?

In respect to the x-coordinate, the y-coordinate was (circle one): doubled tripled quadrupled

Write an equation that would illustrate a relationship of tripling between x and y :

Write an equation that would illustrate a relationship of quadrupling between x and y :

Set 3
Use the following table to determine coordinate pairs for $y=0.5 x$.

x	$y=0.5 x$	y	(x, y)

What was the value of m ?

In respect to the x-coordinate, the y-coordinate was (circle one): doubled halved quartered

Write an equation that would illustrate a relationship of quartering between x and y :

Graphing a Proportional Relationship

To represent all the possible examples of a proportional relationship, we use an equation to determine a few points and graph them in the Cartesian Plane. To begin we will use the tables that were created in Set 2 and Set 3 to graph the proportional relationships they represent.

Set 5

Create a table and graph that illustrates a proportional relationship of tripling between the x and y coordinates.

x	$y=$	y	(x, y)

Name two points on the graph that are not included in the table.

Create a table and graph that illustrates a proportional relationship of quadrupling between the x and y coordinates.

x	$y=$	y	(x, y)

Name two points on the graph that are not included in the table.

Review - Graph the proportional relationships represented by the given equations.
R\#1

x	$y=5 x$	y	(x, y)

Name two points on the graph that are not included in the table.

R\#2

x	$y=1.5 x$	y	(x, y)
-2			
0			
2			
4			

Name two points on the graph that are not included in the table.

R\#3

x	$y=2.5 x$	y	(x, y)
-4			
2			
0			
2			

Name two points on the graph that are not included in the table.

Homework

Using the set of numbers $\{-2,-1,0,1,2,3\}$ for x - values, create a table using the equations below. The heading for your first row of each table should look like this.

$x \mid y=$	y	(x, y)		
1) $y=5 x$	2) $y=3 x$	3) $y=x$	4) $y=0.5 x$	5) $y=0.25 x$
6) $y=-4 x$	7) $y=-4 x$	8) $y=-0.75 x$	9) $y=-x$	10) $y=-6 x$

6) $y=-4 x$
7) $y=-4 x$
8) $y=-0.75 x$
9) $y=-x$
10) $y=-6 x$

Graph the following tables using the graphs found below each of them.

x	$y=0.25 x$	y	(x, y)
0			
4			
8			
12			

11)

12)

x	$y=1.2 x$	y	(x, y)
-5			
0			
5			

13)

x	$y=3.5$	y	(x, y)
-2			
-1			
0			
1			
2			

14)

x	$y=10 x$	y	(x, y)
-5			
0			
5			

15)
16)

x	$y=20 x$	y	(x, y)
-2			
-1			
0			
1			
2			

