5.1 - Introduction to the Cartesian Plane

Class Notes - Solve the following equations.

Set 1 $1=x+3$	$2=x+3$	$3=x+3$	$4=x+3$
Set 2 $5=x+3$	$6=x+3$	$7=x+3$	

	$1=x+3$, $x=-2$ $2=x+3$, $x=-1$ $3=x+3$, $x=0$ $4=x+3$, $x=1$ $5=x+3$, $x=2$ $6=x+3$, $x=3$ $7=x+3$, $x=4$ $8=x+3$, $x=5$	- We can use an equation containing two variables (we usually use x and y) to efficiently represent all possible variations of an equation.
	We can visually represent all possible x-values and the corresponding y-values. In order to do so, we must use the Cartesian	
Plane.		

The Cartesian Plane

The Cartesian Plane, or the coordinate plane, is a two-dimensional method of assigning a point to two corresponding values. The plane consists of two axes. Typically the axes are labeled x and y. Points are organized inside of parenthesis by stating the x coordinate first, then the y-coordinate separated by a comma.

Points can be randomly picked (see Class Activity \#1) or can be determined by using an equation (see Class Activity \#2).

Class Activity \#1

Plot each set of random points in the Cartesian Plane.

Class Activity \#2 - Use the work completed in Set 1 and Set 2 to fill in the table below.
Then use the table to plot points that represent solutions for the equation $y=x+3$.

In this activity we used the equation $y=x+3$ to determine points to plot.
What shape do these points form?

Class Notes - Use each graph to state three coordinates that are solutions for the equation that it represents. Also, state three coordinates that are not solutions for the equation.

Solutions

Not Solutions

Solutions

Not Solutions

State three points that are solutions of the equation represent by the graph.

State three points that are not solutions of the equation represent by the graph.

