5.1 – Introduction to the Cartesian Plane

Set 1	2 = x + 3	3 = x + 3	4 = x + 3
1 = x + 3			
Set 2	6 = x + 3	7 = x + 3	8 = x + 3
5 = x + 3			

Class Notes – Solve the following equations.

$\begin{cases} 1 = x + 3, & x = -2 \\ 2 = x + 3, & x = -1 \\ 3 = x + 3, & x = 0 \\ 4 = x + 3, & x = 1 \\ 5 = x + 3, & x = 1 \\ 5 = x + 3, & x = 2 \\ 6 = x + 3, & x = 3 \\ 7 = x + 3, & x = 4 \\ 8 = x + 3, & x = 5 \end{cases}$	 We can use an equation containing two variables (we usually use <i>x</i> and <i>y</i>) to efficiently represent all possible variations of an equation. We can visually represent all possible <i>x</i>-values and the corresponding <i>y</i>-values. In order to do so, we must use the Cartesian Plane.
--	--

The Cartesian Plane

The Cartesian Plane, or the coordinate plane, is a two-dimensional method of assigning a point to two corresponding values. The plane consists of two axes. Typically the axes are labeled x and y. Points are organized inside of parenthesis by stating the x-coordinate first, then the y-coordinate separated by a comma.

Points can be randomly picked (see Class Activity #1) or can be determined by using an equation (see Class Activity #2).

Class Activity #1

Plot each set of random points in the Cartesian Plane.

Class Activity #2 – Use the work completed in Set 1 and Set 2 to fill in the table below. Then use the table to plot points that represent solutions for the equation y = x + 3.

		1	F			 - P -		 	 	 	 	1	 	•	,	 -		
y =	- <i>x</i> + 3	.																
х	Left Side																	
	(y)																	
	1																	
-1																		
0																		
	4			_	-													_
2			_	_														
	6		_	_													 	
	7		_	_	-												 	
5			_		-												_	_
5			_		-												_	_
				_	-					 						 	 _	_
													 					_
				-	-					 						 		_
				_	+		_	 	 	 	 		 					
				-	+													
					\vdash					 								_

In this activity we used the equation y = x + 3 to determine points to plot. What shape do these points form? **Class Notes** – Use each graph to state three coordinates that are solutions for the equation that it represents. Also, state three coordinates that are not solutions for the equation.

