4.2 - Radical Expressions - Cube Root

The concept for cube root is similar to square root, except we must think in terms of a cube instead of a square.

Activity 1

$$\sqrt[3]{8} = \sqrt[3]{27} =$$

In respect to the diagrams in the activity, what do the cube root of 8 and the cube root of 27 represent?

State the index and the radicands for the radical expressions above.

List of perfect cubes

$4 \times 4 \times 4 =$	$8^{3} =$
$5 \times 5 \times 5 =$	$9^3 =$
$6 \times 6 \times 6 =$	$10^{3} =$
$7 \times 7 \times 7 =$	10

Class Notes – Evaluate each expression that has a perfect cube for its radicand. If an expression contains a radicand that is not a perfect cube, write "need calculator".

LP#1 ³ √125	3√27	₹49	<i>3</i> √8
LP#2 ³ √81	3√1	₹36	₹1000

Class Notes – If the radical expression has a perfect cube radicand, simplify it. If it does

not contain a perfect cube radicand, write "not now".

$ \begin{array}{c} \mathbf{LP#3} \\ \sqrt[3]{x^3} \end{array} $	$\sqrt[3]{m^3}$	$\sqrt[3]{b^2}$	$\sqrt[3]{w^3}$
$LP#4$ $\sqrt[3]{k^4}$	$\sqrt[3]{f^3}$	$\sqrt[3]{n^5}$	$\sqrt[3]{p^3}$

Review – Evaluate or simplify each expression

Review – Evaluate of shirpfing each expression.				
R#1 ³ √8	₹216	$\sqrt[3]{p^3}$		
R#2 ³ √64	₹729	$\sqrt[3]{p^3}$		
R#3 ³ √27	₹343	$\sqrt[3]{h^3}$		

Homework -

Evaluate each expression that has a perfect cube for its radicand. If an expression contains a radicand that is not a perfect cube, write "need calculator".

- 1) $\sqrt[3]{125}$
- 2) $\sqrt[3]{27}$
- 3) $\sqrt[3]{49}$
- 4) $\sqrt[3]{8}$

- 5) $\sqrt[3]{65}$
- **6**) $\sqrt[3]{1}$
- **7**) ³√36
- 8) $\sqrt[3]{1000}$

- 9) $\sqrt[3]{64}$
- **10**) $\sqrt[3]{343}$
- 11) $\sqrt[3]{216}$
- 12) $\sqrt[3]{17}$

Evaluate each expression. State whether the result is rational or irrational. Let w = 2, x = 3, and y = 4.

13)
$$\sqrt[3]{6y + x}$$

13)
$$\sqrt[3]{6y+x}$$
 14) $\sqrt[3]{11w+25y+x}$ 15) $\sqrt[3]{2y}$ 16) $\sqrt[3]{x-w}$

15)
$$\sqrt[3]{2y}$$

16)
$$\sqrt[3]{x-w}$$

17)
$$\sqrt[3]{4y+100w}$$
 18) $\sqrt[3]{y^3}$ 19) $\sqrt[3]{2x+w}$ 20) $\sqrt[3]{20y-8w}$

18)
$$\sqrt[3]{y^3}$$

19)
$$\sqrt[3]{2x + w}$$

20)
$$\sqrt[3]{20y - 8w}$$