4.2 - Radical Expressions - Cube Root

The concept for cube root is similar to square root, except we must think in terms of a cube instead of a square.

Activity 1

$$
\sqrt[3]{8}=\quad \sqrt[3]{27}=
$$

In respect to the diagrams in the activity, what do the cube root of 8 and the cube root of 27 represent?

State the index and the radicands for the radical expressions above.

List of perfect cubes

$$
\begin{array}{ll}
4 \times 4 \times 4= & 8^{3}= \\
5 \times 5 \times 5= & 9^{3}= \\
6 \times 6 \times 6= & 10^{3}= \\
7 \times 7 \times 7= &
\end{array}
$$

Class Notes - Evaluate each expression that has a perfect cube for its radicand. If an expression contains a radicand that is not a perfect cube, write "need calculator".

LP\#1 $\sqrt[3]{125}$	$\sqrt[3]{27}$	$\sqrt[3]{49}$	$\sqrt[3]{8}$
$\frac{\text { LP\#2 }}{\sqrt[3]{81}}$	$\sqrt[3]{1}$	$\sqrt[3]{36}$	$\sqrt[3]{1000}$

Class Notes - If the radical expression has a perfect cube radicand, simplify it. If it does not contain a perfect cube radicand, write "not now".

LP\#3 $\sqrt[3]{x^{3}}$	$\sqrt[3]{m^{3}}$	$\sqrt[3]{b^{2}}$	$\sqrt[3]{w^{3}}$
LP\#4 $\sqrt[3]{k^{4}}$	$\sqrt[3]{f^{3}}$	$\sqrt[3]{n^{5}}$	$\sqrt[3]{p^{3}}$

Review - Evaluate or simplify each expression.

R\#1 $\sqrt[3]{8}$	$\sqrt[3]{216}$	$\sqrt[3]{p^{3}}$
R\#2 $\sqrt[3]{64}$	$\sqrt[3]{729}$	$\sqrt[3]{p^{3}}$
R\#3 $\sqrt[3]{27}$	$\sqrt[3]{343}$	$\sqrt[3]{h^{3}}$

Homework -

Evaluate each expression that has a perfect cube for its radicand. If an expression contains a radicand that is not a perfect cube, write "need calculator".

1) $\sqrt[3]{125}$
2) $\sqrt[3]{27}$
3) $\sqrt[3]{49}$
4) $\sqrt[3]{8}$
5) $\sqrt[3]{65}$
6) $\sqrt[3]{1}$
7) $\sqrt[3]{36}$
8) $\sqrt[3]{1000}$
9) $\sqrt[3]{64}$
10) $\sqrt[3]{343}$
11) $\sqrt[3]{216}$
12) $\sqrt[3]{17}$

Evaluate each expression. State whether the result is rational or irrational. Let $w=2$, $x=3$, and $y=4$.
13) $\sqrt[3]{6 y+x}$
14) $\sqrt[3]{11 w+25 y+x}$
15) $\sqrt[3]{2 y}$
16) $\sqrt[3]{x-w}$
17) $\sqrt[3]{4 y+100 w}$
18) $\sqrt[3]{y^{3}}$
19) $\sqrt[3]{2 x+w}$
20) $\sqrt[3]{20 y-8 w}$

