Activity for 4.1 – State the area of each square, then represent the area using a power. State the dimension of one of the sides of each square.

If we are given the area of a square and we want to determine the measurement of one of its sides, what function would we use to accomplish this?

4.1 – Radical Expressions – Square Root

Use the terms *index*, *radicand*, and *square root* to label the following expression:

Class Notes – Evaluate each expression that has a perfect square for its radicand. If an expression contains a radicand that is not a perfect square, write "need calculator".

	$\sqrt{81}$	$\sqrt{42}$	√121	$\sqrt{5}$
$\frac{\mathbf{LP\#2}}{\sqrt{36}}$	$\sqrt{11}$	$\sqrt{49}$	$\sqrt{1}$	$\sqrt{72}$

Class Notes – Evaluate each expression. State whether the result is rational or irrational. Let w = 2, x = 3, and y = 4.

$\frac{LP#3}{\sqrt{w}}$	\sqrt{x}	\sqrt{y}	$\sqrt{12x}$
$\frac{\mathbf{LP\#4}}{\sqrt{x-w}}$	$\sqrt{w+x+y}$	$\sqrt{3x+4y}$	$\sqrt{5y-2x}$

Class Notes – If the radical expression has a perfect radicand, simplify it. If it does not contain a perfect radicand, write "not now".

$\frac{\mathbf{LP\#5}}{\sqrt{x^2}}$	$\sqrt{m^2}$	$\sqrt{p^3}$	$\sqrt{w^2}$
$\frac{\mathbf{LP\#6}}{\sqrt{n}}$	$\sqrt{k^2}$	$\sqrt{d^2}$	$\sqrt{y^3}$

1		
R#1	$\sqrt{144}$	$\sqrt{h^2}$
$\sqrt{9}$		
R#2	$\sqrt{196}$	$\sqrt{b^2}$
$\sqrt{64}$		VC
R#3	$\sqrt{400}$	$\sqrt{a^2}$
$\sqrt{4}$		Va

Review – Evaluate or simplify each expression.

Homework –

Evaluate each expression.

1)	$\sqrt{64}$	2) $\sqrt{121}$	3) $\sqrt{25}$	 √225
5)	$\sqrt{49}$	6) $\sqrt{81}$	 √196 	8) $\sqrt{144}$
9)	$\sqrt{36}$	10) $\sqrt{4}$	11) \sqrt{16}	12) \sqrt{9}

Evaluate each expression. State whether the result is rational or irrational. Let w = 5, x = 1, and y = 8. **13**) $\sqrt{20w}$ **14**) $\sqrt{7x}$ **15**) $\sqrt{y + y}$ **16**) $\sqrt{x + y}$

- **17**) $\sqrt{10x w}$ **18**) $\sqrt{2w + 7x + y}$ **19**) $\sqrt{4x + 4y}$ **20**) $\sqrt{4w 3x}$
- 21) $\sqrt{2y}$ 22) $\sqrt{6w-5x}$ 23) $\sqrt{10w-3y}$ 24) $\sqrt{10y+8w+x}$