3.2 Introduction to Solving Equations – Part II

Later in this unit we will be solving linear equations. Before we begin solving, we need to know how to identify a linear equation. Most linear equations are first-degree equations. First-degree equations contain a variable in which the highest exponent is one.

LP#1	3w - 15 = 2w + 3	$y^2 - 36 = 0$	3z + z = 28
x + 3 = 10			
LP#2	10z + 2 = 12z - 1	$100 = 4w^2$	$x^3 = 342$
$x^2 = 25$			
LP#3	$y^4 = 16$	x + 25 = 40 - 3x	$x^2 - x = 12$
<i>w</i> = 13			

Class Notes – State the degree of each equation. Identify the equation as linear or nonlinear.

Review – State the degree of each equation. Identify the equation as linear or nonlinear.

\mathcal{U} 1	
R#1	$10 = m^2 - 3m$
2x - 6 = 30	
R#2	7z - 1 = 2z + 9
$c^4 = 81$	
R#3	x + 8 = 24 - x
$x^3 = 125$	

Homework – State the degree of each equation. Identify the equation as linear or nonlinear.

1)	6x + 4 = 34	2) $200 = 8w^2$	3) $9z + 20 = 11z - 6$	4) $x^3 = -125$
5)	3z + 8 = 7z - 4	6) $x^3 = 8$	7) $250 = 10w^2$	8) $15x + 45 = 60$
9)	$12 = w^2 + w$	10) $11x + 6 = 28$	11) $3x^3 = 24$	12) $z + 12 = 7z - 6$

Synthesis

Rewrite each first-degree equation into an equivalent equation containing radical coefficients. Rewrite each second-degree equation into an equivalent equation containing fractional coefficients.

13) 6z + 24 = 3z**14**) $6 = 0.25m^2 - 0.5m$ **15**) x + 21 = 4x - 3**16**) $0.1p^2 - 0.5 = 0.4p$ **17**) 2x + 0.5x = 7.5**18**) $40 = \sqrt{0.25}k^2 - 0.6k$