3.2 Introduction to Solving Equations - Part II

Later in this unit we will be solving linear equations. Before we begin solving, we need to know how to identify a linear equation. Most linear equations are first-degree equations. First-degree equations contain a variable in which the highest exponent is one.

Class Notes - State the degree of each equation. Identify the equation as linear or nonlinear.

$\mathrm{LP} \# 1$ $x+3=10$	$3 w-15=2 w+3$	$y^{2}-36=0$	$3 z+z=28$
$\mathrm{LP} \# 2$ $x^{2}=25$	$10 z+2=12 z-1$	$100=4 w^{2}$	$x^{3}=342$
$\mathrm{LP} \# 3$ $w=13$	$y^{4}=16$	$x+25=40-3 x$	$x^{2}-x=12$

Review - State the degree of each equation. Identify the equation as linear or nonlinear.

$\mathrm{R} \# 1$ $2 x-6=30$	$10=m^{2}-3 m$
$\mathrm{R} \# 2$ $c^{4}=81$	$7 z-1=2 z+9$
$\mathrm{R} \# 3$ $x^{3}=125$	$x+8=24-x$

Homework - State the degree of each equation. Identify the equation as linear or nonlinear.

1) $6 x+4=34$
2) $200=8 w^{2}$
3) $9 z+20=11 z-6$
4) $x^{3}=-125$
5) $3 z+8=7 z-4$
6) $x^{3}=8$
7) $250=10 w^{2}$
8) $15 x+45=60$
9) $12=w^{2}+w$
10) $11 x+6=28$
11) $3 x^{3}=24$
12) $z+12=7 z-6$

Synthesis

Rewrite each first-degree equation into an equivalent equation containing radical coefficients. Rewrite each second-degree equation into an equivalent equation containing fractional coefficients.
13) $6 z+24=3 z$
14) $6=0.25 m^{2}-0.5 m$
15) $x+21=4 x-3$
16) $0.1 p^{2}-0.5=0.4 p$
17) $2 x+0.5 x=7.5$
18) $40=\sqrt{0.25} k^{2}-0.6 k$

